第二百一十一章 全国大学生数学竞赛
第二百一十一章 时间来到正月十五号。 今天是元宵节,同样是一年一届的全国大学生数学竞赛开赛的日子。 大一的学生们,是定在正月十八开学。 因此宿舍内,还是只有马正轩一人。 竞赛上午九点开始,地点就在燕大的一栋教学楼。 早晨早早的起来,马正轩洗漱好,吃完早饭,便来到图书馆进行最后的备战。 这一周的时间,马正轩一边听着竞赛辅导课,一边去顾律的办公室时不时的请教问题,已经做了最充足的准备。 马正轩不像毕齐,马正轩讲究的是稳妥。 既然选择参加了大学生数学竞赛,那自然是可以稳稳的拿到奖项最好。 最近这几天,马正轩一直很晚才睡,把往年的竞赛真题和顾律出的十套模拟题,翻看了一遍又一遍。 现在,就是检验他备战成果的时候了。 八点半,马正轩离开图书馆,迈着稳健的步伐走向考场所在的教学楼。 九点整,全国大学生数学竞赛正式开考。 试卷共有二十六道题目,其中包括两道附加题。 满分共200分。 按照往年的情况,需要190分以上的成绩才能获得全国一等奖。 毕竟,这可是全国范围内层次最高的数学竞赛。 连燕大、清华的学生都会参加这个比赛,足以证明这项赛事获奖的难度多高。 马正轩的目标,自然是奔着一等奖来的。 这届全国大学生数学竞赛,燕大共有三十多位数学系的学生参赛,其中大部分是大二大三的学长。 大一的学生,加上马正轩,仅有三人。 马正轩深感压力很大。 不过,这段时间,在顾律的疯狂灌输下,让马正轩意识到,自己未必会弱与那些高粘结的学长。 马正轩性格沉稳,但并非意味着不争不抢。 “我不能对不起顾老师的期望!”马正轩紧握着双拳,深吸口气,翻开试卷,目光一一扫过题目。 中规中矩! 这是马正轩一瞬间的判断。试题的题型和考点,和前几年差别不大,只是在具体的题目上略作改变,整的来说只能算是中规中矩。 而且,有几道题目,和顾律那十套模拟卷中的题目大同小异,马正轩可以直接轻松类比过来解题。 一瞬间,马正轩信心增强不少。 然后拿起笔,开始解题。 第一题:【设实方阵H1=(0、1|1、0),Hn 1=(Hn、I|I、Hn),n≥1,其中I是与Hn同单位的同阶方阵,则rank(H4)=______】 这道题的考点是和对角方阵的有关知识点。 唰唰唰! 马正轩在草稿纸上写着解题步骤:【Hn是m=2^n阶对称方阵,那么便会存在一个正交方阵P使得……得出答案,rank(H4)=10。】 马正轩的做题速度称不上多快,但仍旧只是五分钟不到的时间,就搞定第一题。 半个小时时间,马正轩搞定前面十道选择,只剩下后面十六道大题。 而距离考试结束,还剩下三个小时的时间。 这个时间,足够了。 马正轩提笔开始做十六道大题的第一题。 【设α∈(1,2),(1-x)^α的Ma级数为∑akx^k,nxn实常数矩阵A为幂零矩阵,I为单位矩阵,设矩阵值函数G(x)定义为……,试证对于1≤i,j≤n,积分∫g(ij)(x)dx均存在的充分必要条件是A^3=0.】 这是一道证明题。 考察的内容很多,有积分、矩阵,还有不等式。 但这并不能难住马正轩。 这三方面的知识,都是很基础的内容,马正轩没有不会的道理。 这种难度的题目,甚至不需要马正轩在草稿纸上演算,但为了稳妥起见,马正轩还是在草稿纸上算了一遍再腾到答题纸上。 【A为幂零矩阵故有A^n=0,记f(x)=(1-x)^α,当j>k时,记……,用Jordan标准型直接表示出G(x),故此,使得积分∫g(ij)(x)dx均存在的充分必要条件是A^3=0.】 当时间还剩下一个半小时的时候,马正轩只剩下最后两道附加题。 附加题一:【设X1,X2……Xn,都是独立同分布的随机变量,其有共同分布函数F(X)和密度函数f(x),现对随机变量,X1……Xn,按大小顺序重新排列,……】 附加题二:【证明:若f∈S,则在Δ:|z|≦1内,有|z|/(1 |z|)^2≦|f(z)|≤|z|/(1-(x))^2.】 附加题一没有难度,倒是附加题二,让马正轩卡壳了许久。 思索了许久,回忆了许久,马正轩一直回忆到去年这个时候在冬令营培训备战IMO时,顾律给他讲过的一个小知识点。 “这是……Koebe偏差定理!”马正轩眼前一亮,回忆起顾律讲述过的有关‘Koebe偏差定理’的内容。 所谓的Koebe偏差定理,也就是附加题二的题干,是用来描述单位圆盘上单叶函数的一个有界定理。 “当时老师是怎么证明这个定理的?”马正轩闭着眼睛,仔细回忆。 “deBranges定理!”许久之后,马正轩缓缓吐出这个名词。 他记得,当初就是利用deBranges定理,推导之后,得到的Koebe偏差定理。 deBranges定理,是大学复变函数课程中的一个定理,它的主要内容,是讲如果有一个函数的幂级数展开为f(z)=z a2z^2 a3z^3 ……anz^n,则|an|≦n且等号成立当且仅当函数z/(1-z)^2或它的旋转。 而当时,在马正轩的记忆中,顾老师就是利用,利用deBranges定理,推导出当|z|<1时,f(z)的范围。由于f(0)=0,……,得到|f(z)|=|∫f(ζ)dζ|≤|z|/(1-z)^2,最后,得出Koebe偏差定理。 当时在冬令营的时候,顾老师明确的讲过,这是超纲的内容,IMO会用到的可能性极小,让众人听听就可以。 虽然不会在IMO中用到,当时的马正轩还是在笔记上记了下来,偶尔会翻看几下。 但没想到,在IMO上没有用到,倒是在全国大学生数学竞赛的时候,用到了这部分的知识。 若非是马正轩时常温习笔记上的内容的话,一年时间的过去,这部分内容,马振轩肯定是记不得了。 既然知道了证明的过程,那剩下的就好办了。 十几分钟的时间,马正轩就完成了附加题二的作答。 至此,整套试卷马正轩全部做完,而距离交卷,还有半个多小时。 在考试规则中,是允许提前交卷的。 但马正轩没有这么做的习惯,在仔细反复检查了多遍后,一直等到考试结束铃声响起,马正轩才交卷。 剩下的事情,便是静待着成绩的出炉了。 大学生数学竞赛的阅卷速度很快,短则十天,多则半个月,就会公布排名和获奖情况。